

Understanding PIR-based Sensors

What is a PIR sensor?

PIR is a short form of **Passive Infrared**. A PIR sensor is an electronic device capable of sensing the presence and movement of a warm object (human body or vehicle) by measuring the change of infrared (IR) energy radiated from that moving object within its field of view. PIR is considered the most commonly used sensing technology in intrusion detectors for security, and occupancy/vacancy sensors for lighting control.

A PIR sensor is made up of a multi-segment Fresnel lens and, a pyroelectric infrared sensor operating together with signal processing, power converting and output control electronics. A Fresnel lens is employed to focus the infrared energy emitted from a warm object onto the pyroelectric infrared sensor for signal processing. Each effective Fresnel lens segment is designed to collect the change of infrared radiation from a corresponding detection zone; therefore, a Fresnel lens combined with multiple segments will provide a specific detection pattern featuring multiple detection zones distributed within the range. By using different lenses designed with different Fresnel segment combinations, a PIR sensor can thus provide different coverage.

IR-TEC offers a very wide range of PIR-based motion/occupancy sensors and lenses for selection. To know more about IR-TEC sensors, please visit <u>www.irtec.com</u> for more details.

Operating principles

All objects with a surface temperature above absolute zero (-273°C) emit heat energy in a form of electromagnetic radiation. Usually this radiation is not visible to the human eye because it radiates at infrared wavelengths, but it can be detected by electronic devices designed for such a purpose. A PIR sensor is

purposely designed to detect the change of thermal infrared energy with wavelength ranging from 8-15 um which corresponds to the range of human body temperature.

TECHNICAL BULLETIN

Types of PIR sensors

A. By the Way of Mounting

PIR sensors can be categorized as "ceiling sensors" and "wall sensors" by the way of mounting. Ceiling sensors are designed for mounting on ceiling or integrating with light fixtures to provide "conical look-down" detection patterns; wall sensors are designed for mounting on wall or corners to provide "horizontal fan-out" detection patterns. In general, ceiling sensors are more suitable for open spaces, with or without partitions; wall sensors are more suitable for enclosed spaces without objects that may block the sensor "seeing" the occupant.

IR-TEC offers a wide range of PIR-based ceiling and wall sensors. IR-TEC's ceiling sensors can be flexibly mounted on ceiling or integrated with OEM lighting fixtures via different mounting brackets. IR-TEC's wall sensors which can be mounted into the wall box (the WALLSENZR series in-wall sensors), or on the wall/corner with a swivel mounting bracket which provides horizontal/vertical angle adjustment.

B. By the Voltage of Power

PIR sensors also can be categorized as "**low voltage sensors**" and "**line voltage sensors**" by the operation voltage. Low voltage sensors are designed to operate with power voltage lower than 50V (typically 24V, 12V, or lower), and they are normally used for intruder detection in security systems or occupancy/vacancy sensing for automatic lighting/HVAC control systems. Line voltage sensors are designed to operate with line voltage power at 110/120V, 234/240V/277V, or 380/477V, and they are normally used to switch on/off the load with or without output level control, such as 0-10V dimming for lighting.

IR-TEC offers a wide range of low and line voltage PIR-based sensors designed for broad applications. Numerous models of power pack and controller are available for integrating with a variety of low voltage sensors to provide zone-based lighting/HVAC control for commercial/industrial applications. For more details of IR-TEC's PIR-based sensors, please visit <u>www.irtec.com</u>.

TECHNICAL BULLETIN

Application Notes

There is no perfect motion/occupancy sensing technology which is good for all applications, so we should realize that even though PIR is the most commonly used sensing technology in the industry, it still has limitations and physical characteristics while using a PIR-based sensor to do the job. The following are some application notes for people who like to understand more about using PIR-based sensors.

- Movement is essential for PIR sensor to detect. Stillness is not detectable for PIR sensor.
- PIR sensor requires unobstructed line-of-sight to detect the movement within its range.
- PIR is more sensitive to the movement across its detection zones than toward the sensor.
- Temperature differences between the object and background is imperative for PIR sensing.
- The closer the object and ambient temperatures, the harder it is for a PIR sensor to "see".
- Warm air and strong wind within the range could cause "false detection" of PIR sensors.
- Blind areas are inevitable for PIR sensors. The farther from the sensor, the larger the area.
- Size of the object matters. The larger the object, the easier for sensor to sense the motion.
- The closer the object is to the sensor, the faster for PIR sensor to catch the movement.
- PIR sensor can also "see" moving pets, animals and vehicles within its detection range.
- Blocking or masking part of the lens can avoid picking up movement from adjacent areas.
- High bay ceiling sensors require the highest sensitivity, so are more sensitive to environment.
- Stable and quality power supply is essential for PIR sensors to achieve reliable operation.
- A cold, just-started electric vehicle or fast moving car may not be detected by a PIR sensor.

Best Practices When Using PIR-based Occupancy Sensors

Application	Recommendations	Caution
Break room	• For larger break rooms, ceiling sensors are	Sensors placed in non-enclosed break room
	highly recommended.	must be carefully positioned to avoid seeing
	 For non-enclosed break room, wall sensor 	pass by movements from adjacent areas.
	mounting at the wall/corner that allows	 Smaller spaces may be better served by wall
	sensor to "see" only the occupants within the	sensors; however the sensors should be
	area is the best option.	properly placed so that they are not blocked by
		open doors from entry ways, , or refrigerators.
Classroom	 Sensors should cover instructor's desk, the 	• Ensure the sensors not being blocked by things
	room entrance, and other areas where	that are hung from the ceiling.
	people may sit for a long periods of time.	• Ensure that the wall sensor is not blocked
	• Mount the sensor on the wall with door to	when the door is left open.
	avoid seeing pass by movement from corridor.	
Conference	Larger conference rooms may require	• Properly position the sensor so it is directed
Room	multiple sensors for complete coverage.	away from doors and windows.
	• Wall sensors can be used for medium and	• Ensure that the wall sensor is not blocked
	small conference rooms.	when the door is left open.
	Rooms with manual-on switch can use ceiling	Manual switch should be included for override
	sensor over the table and presentation area.	control of the lighting.
Corridor	 Make sure all access points into the corridor 	Occupancy sensors are preferable to vacancy
	are covered by the sensors.	sensors for corridors, especially those with
	Select the sensor with lens for corridor	multiple access points, because vacancy
	less number of sensors required	deerways
	 Longer delay can be set to avoid distracting 	 Multiple concerts may be required to cover a
	accupants in the rooms lining the corridor	long corridor or an odd shaped hallway
Office	Becommend to use PIR+HED dual-tech sensor	 Ensure that the wall sensor is not blocked
onice,	to get better minor motion sensing canability	when the door is left open
Private	 In-wall sensor with manual override switch is 	 The areas with minor motions such as typing
	always the best option for small and medium	or page turning. MUST be covered by the
	offices.	sensor with better minor motion detection.
Office.	Complete coverage must be provided in the	• The areas with minor motions like typing,
Onon	walkways with overlapping coverage to avoid	writing, or page turning, MUST be covered by
Open	blind spots.	the sensor with minor motion detection.
	 If cubicle partitions are tall, placing a ceiling 	• Do NOT set delay time shorter than 5 minutes
	sensor right above the partition will provide	as frequent switching can be a nuisance for
	the best sensing performance.	neighboring cubicles.
Restroom	In-wall sensors are highly recommended for	• For odd-shaped restrooms, multiple sensors
	individual restrooms.	may be required to provide total coverage.
	 One ceiling sensor can be placed over the 	 Vacancy sensing control is not recommended
	stall to cover two adjacent units.	for public restroom.
Storage	 Ceiling sensors are recommended for storage 	 Stacks between the occupant and sensor will
	rooms with shelves and racks.	block the sensor from seeing the occupant.
Parking	 Fixtures with sensor integrated are highly 	 Sensors for driveways and parking areas should
Garage	recommended due to cost effectiveness.	be set with different modes and parameters.
Warehouse	• For high-bay lighting, select the sensors with	• Not all ceiling sensors are suitable for high-bay.
	lenses that are designed for high-bay.	• The sensors must be placed carefully to
	• Blind spots are inevitable for mid and high	protect them from being knocked off by
	bay applications.	forklifts and other equipment.